

OPENSENSE

OPEN SENSOR NETWORKS FOR AIR QUALITY MONITORING

Karl Aberer, EPFL Boi Faltings, Alcherio Martinoli, Martin Vetterli, EPF Lothar Thiele, ETH Zürich

OpenSense Vision

Community driven, large-scale air pollution measurement in urban environments

- Important problem: air pollution
 - Affects quality of life and health
 - Urban population increasing
 - Air pollution is highly location-dependent
 - traffic chokepoints
 - industrial installations
- Few monitoring stations measure pollutants

- Important technical opportunities and challenges
 - Massive measurements that exploit
 - Wireless sensor networks
 - Mobile stations
 - Community involvement
 - More data, more noise, but also more redundancy
- Can we produce better quality data?

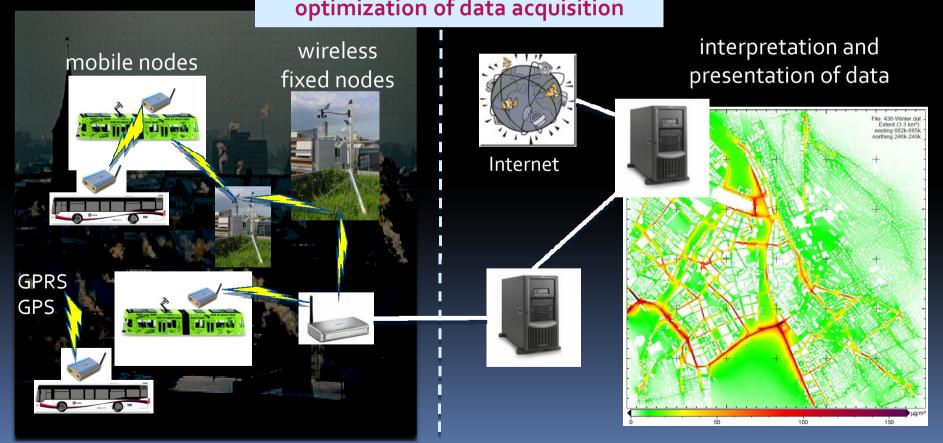
Address key challenges in communication and information systems for urban air quality monitoring

Basic Sensing Infrastructure

Mobile sensor nodes on public transportation and private mobile devices

Wireless sensing and communication infrastructure

Overall Goal

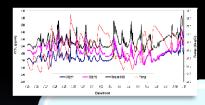

SENSING SYSTEM

NANO

From many wireless, mobile, heterogeneous, unreliable raw measurements ...

INFORMATION SYSTEM
... to reliable, understandable and
Web-accessible real-time
information

sensor network control optimization of data acquisition



Scientific Challenge

Is massive sensing with large numbers of heterogeneous and mobile sensors technically feasible and practically useful?

MOBILE SENSORS Controlled vs. uncontrolled **mobility patterns**

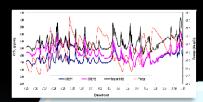
HETEROGENEOUS SENSOR NETWORKS Many sources of **correlation**

mobility patterns

COMMUNITY SENSING
Reliability and **trustworthiness** of measurements and interpretation

Scientific Questions

Correct interpretation of sensor measurements requires understanding of their context!



MOBILE SENSORS

Loc. and time of measurement:

- Sampling under mobility
- Intermittent connectivity
- Control of node activity

Task 1

· Control of rLask 3

COMMUNITY SENSING

Producers and users of data:

- Data quality and reputation
- Qualitative models
- Efficient access to model data

HETEROGENEOUS SENSOR NETWORKS

<u>Correlation to other measurements</u>:

- Physical Models
- Simulation Models
- Data analysis

Utility-based control

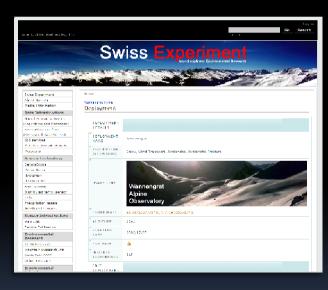
- The problem of control in community sensing networks needs to consider a wide variety of factors
 - quality of measurements (classical problem), energy consumption, communication cost, mobility patterns, privacy violation, personal relevance, etc.
- Utilitarian approach towards sensing and data management
 - Models utility of data being produced and consumed
 - Uses utility to control data production
- Layered utility model
 - Models several levels of abstraction depending on capacity of devices (cloud computing vs. low-power sensor)

Experimental Validation

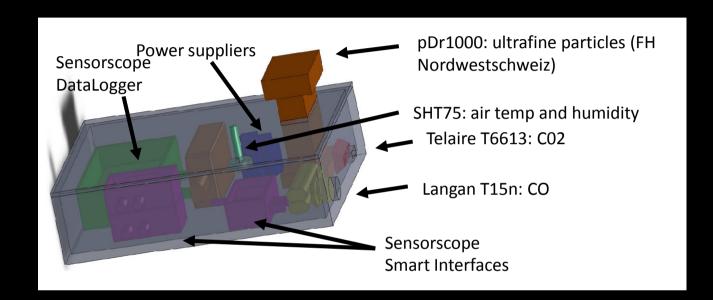
Verify our approach by a real system deployment

- Preventive Health Studies
 - In collaboration with Swiss Institute for Tropical and Public Medicine
 - Sapaldia Study
- 2. Deployment on public transportation networks
 - Lausanne and Zürich
 - Community involvement

IC Infrastructure


Existing platforms in use for hydrological and geophysical engineering

Fixed wireless sensor networks based on SensorScope stations Flexible configuration



Mobile nodes based on PermaSense nodes *Robust and long-lived*

Web-based information system based on the Swiss Experiment platform

Sensors

Pollutant	Normal range in urban environment	NAAQS Levels/Averaging time	Sensor choice	Resolution/ Precision
NO ₂	0.008-0.04 ppm	0.016 ppm Annual avg 0.053 ppm Daily avg	Alphasense NO2 BA (under test)	± 0.005 ppm/NA
СО	0.5-5 ppm ^(normal) 5-20 ppm _(near gas stoves)		Langan CO T15d	0.05 ppm (0.005 optional)/NA
CO ₂	500-1500 ppm		Telaire T6613	NA/ ±35ppm@500ppm
Temp/Hum	NA	NA	SHT75	0.04°C,0.4% ±0.3°C, ±1.8%
Particles	???	???	DiSC (to be adapted)	Range: 10- 200nm/NA

Conclusions

- Unique project in community sensing in terms of scope
 - End-to-end perspective
- Applications in personal and preventive health
 - Transfer of results to cities in emerging countries
- Pronounced interest by public authorities and industry