
In Search of an Internet of Things
Service Architecture:

REST or WS-*? A Developers’ Perspective

Dominique Guinard, Iulia Ion, and Simon Mayer

Institute for Pervasive Computing, ETH Zurich, Switzerland,
dguinard|iulia.ion|simon.mayer@inf.ethz.ch

Abstract. Current trends inspired from the development of the Web 2.0
advocate designing smart things (e.g., wireless sensors nodes or home ap-
pliances) as service platforms. Interoperable services are mainly achieved
using two different approaches: WS-* and RESTful Web services. These
approaches have previously been compared with respect to performance
and features, but no work has been done to elicit the developers’ pref-
erences and programming experiences. We conducted a study in which
69 novice developers learned both technologies and implemented mo-
bile phone applications that retrieve sensor data, both through a REST-
ful and through a WS-* service architecture. The results complement
the available technological decision framework when building Internet of
Things applications. The results suggest that developers find REST eas-
ier to learn than WS-* and consider it more suitable for programming
smart things. However, for applications with advanced security and Qual-
ity of Service requirements, WS-* Web services are perceived to be better
suited.

Key words: Internet of Things, Web of Things, WSN, Mobile, Web
Services, REST, WS-*

1 Introduction and Related Work

The Internet of Things (IoT) explores ways to connect and build upon networks
of digitally enhanced, communication-capable objects, such as wireless sensor
nodes, mobile phones, and home appliances, generally known as “smart things”.
Sensor nodes might, for instance, be networked together to create environmental
monitoring applications [13].

Home appliances might communicate with each other to offer smarter heating
systems or to optimize their energy consumption [5]. However, the development
of applications that integrate the functionality of multiple smart things remains
a challenging task, because it requires expert knowledge of each platform.

To facilitate this, recent research initiatives tried to provide uniform inter-
faces that create a loosely coupled ecosystem of services for smart things [5, 10].
The goal is to enable a widely distributed platform in which smart things pro-
vide services that can be easily composed to create new applications. Two types

dguinard|iulia.ion|simon.mayer@inf.ethz.ch


2 D. Guinard et al.

of service-oriented architectures stand out as potential candidates to enable uni-
form interfaces to smart objects: the Representational State Transfer (REST) [3]
and WS-* [9] Web services:

WS-* These services declare their functionality and interfaces in a Web Ser-
vices Description Language (WSDL) file. Client requests and service response
objects are encapsulated using the Simple Object Access Protocol (SOAP) and
transmitted over the network, usually using the HTTP protocol. Further WS-
* standards define concepts such as addressing, security, discovery or service
composition. Although WS-* was initially created to achieve interoperability of
enterprise applications, work has been done to adapt it to the needs of resource-
constrained devices [10, 13]. Furthermore, lighter forms of WS-* services, such
as the Devices Profile for Web Services (DPWS)1, were proposed [6].

REST At the core of a RESTful architecture [3] lie resources that are uniquely
identified through Uniform Resource Identifiers (URIs). The Web is an imple-
mentation of RESTful principles – it uses URLs to identify resources and HTTP
as their service interface. Resources can have several representation formats (e.g.,
HTML, JSON2) negotiated at run time using HTTP content negotiation. In a
typical REST request, the client discovers the URL of a service it wants to call by
browsing or crawling its HTML representation. The client then sends an HTTP
call to this URL with a given verb (GET, POST, PUT, etc.), a number of options
(e.g., accepted format), and a payload in the negotiated format (e.g., XML or
JSON). Several recent research projects implement RESTful Web services for
smart things [2] within what has become to be known as the Web of Things [5].

While the two architectures share the goal of providing developers with ab-
stractions (i.e., APIs) for interacting with distributed services, they tackle loose
coupling and interoperability differently. Consequently, work has been done to
evaluate the two approaches. In [8, 9], REST and WS-* are compared in terms
of re-usability and loose coupling for business applications. The authors suggest
that WS-* services should be preferred for “professional enterprise application
integration scenarios” and RESTful services for tactical, ad-hoc integration over
the Web.

Internet of Things applications pose novel requirements and challenges as nei-
ther WS-* nor RESTful Web services were primarily designed to run and be used
on smart things, but rather on business or Web servers. This development thus
necessitates assessing the suitability of the two approaches for devices with lim-
ited capabilities. Yazar et al. [13] analyze the performance of WS-* and RESTful
applications when deployed on wireless sensor nodes with limited resources and
conclude that REST performs better.

However, evaluating the performance of a system when deployed on a par-
ticular platform is not enough to make the architectural decision that will foster
adoption and third-party (public) innovation. Indeed, studies like the Technol-
ogy Acceptance Model [1] and more recent extensions [4] show that the perceived

1 See www.ws4d.org
2 See www.json.org



REST or WS-*? A Developers’ Perspective 3

ease of use of an IT system is key to its adoption. As many manufacturers of
smart things are moving from providing devices with few applications to building
devices as platforms with APIs, they increasingly rely on external communities
of developers to build innovative services for their hardware (e.g., the Apple
App Store or Android Marketplace). An easy to learn API is, therefore, key in
fostering a broad community of developers for smart things. Hence, choosing the
service architecture that provides the best developer experience is instrumental
to the success of the Internet of Things and the Web of Things on a larger scale.

In this paper we complement the decision framework that can be used when
picking the right architecture for IoT applications and platforms. We supplement
previous work [8, 9, 13] by evaluating, in a structured way, the actual develop-
ers’ experience when using each architecture in an IoT context. We analyze the
perceived ease of use and suitability of WS-* and RESTful Web service archi-
tectures for IoT applications. Our study is based on the qualitative feedback
and quantitative results from 69 computer science students who developed two
applications that accesses temperature and light measurements from wireless
sensor nodes. For one of the applications, the participants used a sensor node
offering a RESTful Web API. In the second case, they were accessing a sensor
node through a WS-* (WSDL + SOAP-based) API.

Our results show that participants almost unanimously found RESTful Web
services easier to learn, more intuitive and more suitable for programming IoT
applications than WS-*. The main advantages of REST as reported by the par-
ticipants are intuitiveness, flexibility, and the fact that it is more lightweight.
WS-* is perceived to support more advanced security requirements and benefits
from a clearer standardization process.

This paper is structured as follows. Section 2 describes the study methodol-
ogy. Section 3 presents and analyses the results. Finally, Section 4 discusses the
implications of our findings and devises guidelines.

2 Methodology

Our study is based on a programming exercise and the feedback received from
a group of 69 computer science students who learned about RESTful and WS-*
Web service architectures and implemented, in teams, mobile phone applications
that accessed sensor data from different sensor nodes using both approaches.
The exercise was part of an assignment in the Distributed Systems course at
ETH Zurich3. The material used for instructing the students about the two
technologies was prepared so as to not introduce a bias4.

Although we worked on native architectures for both REST and WS-* [5],
in order for the results not to be influenced by the performance of the sensors
for each architecture, we used two proxies as shown in Figure 1. As a result, the

3 The assignment is available online: tinyurl.com/vs-assignment
4 All course material is available online: tinyurl.com/vs-material



4 D. Guinard et al.

Fig. 1. Setup of the user study. In order not to influence the results, the 4 Sun SPOTs
sensor nodes are connected through proxies offering once a RESTful API (left), once
a WS-* API (right).

study can focus on the development experience and usability rather than on the
architectures’ performance that has already been studied by others (e.g., [13]).

To get and parse the RESTful sensor responses, participants were advised
to use the Apache HTTP Client library5 and JSON.org libraries6. To perform
the WS-* request, we advised the students to use the kSoap2 library7 which
offers a set of tools to interact with WS-* services. It is worth noting that while
these two libraries are well aligned with the abstractions represented by both
architectures and are standard tools for accessing each type of API from a mobile
device, the students were free to pick other tools. Averaging over the submissions,
the programs had 105 lines of code for the WS-* implementation (SD = 50.19,
where SD is the Standard Deviation), opposed to 98 lines of code for the REST
implementation (SD = 48.31).

The two coding tasks were solved in teams of two or three members who
were able to freely decide how to split up the tasks amongst team members.
The coding tasks were successfully completed by all teams within two weeks. To
ensure that every team member had understood the solution of each task, indi-
vidual structured questionnaires about both technologies had to be submitted.
Additionally, we included a voluntary feedback form on the learning process in
the study. Students were informed that answers in the feedback form were not
part of the assignment, and that responses would be used in a research study. To
encourage them to give honest answers about the amount of effort invested in
solving both coding tasks, perception, and attitudes towards both technologies,
entries in the feedback form were made anonymously. Table 1 summarizes the
data collection sources.

5 See hc.apache.org
6 See json.org
7 See ksoap2.sourceforge.net



REST or WS-*? A Developers’ Perspective 5

Demographics: The participants were from ETH Zurich, in their third or
fourth year of Bachelor studies. Teams were formed of two or three members.
They were taught both technologies for the first time, in a short introduction
during the tutorial class. 89% reported not having had any previous knowledge
of WS-* and 62% none of REST. From the 35% that had already used REST
before the course, half reported that they had previously been unaware that
the technology they used actually was based on the REST architecture. 5% (2
students) had programmed WS-* applications.

Additional Tasks: Subsequent tasks involved creating visualization mech-
anisms for the retrieved data, both locally and through cloud visualization solu-
tions. These tasks are, however, not relevant for the presented study.

Data Source Type N

RESTful and WS-* Applications Team 25

Structured Questionnaire Individual 69

Voluntary Feedback Form Anonymous 37

Table 1. Data was collected from different programming tasks and questionnaires.

3 Results

In this section, we present our results on the perceived differences, ease of learn-
ing, and suitability of the technologies for IoT-related use cases.

3.1 Perceived Differences

Using the structured questionnaire, we collected qualitative data on the per-
ceived advantages of both technologies with respect to each other. While REST
was perceived to be “very easy to understand, learn, and implement,” lightweight
and scalable, WS-* “allows for more complex operations,” provides higher secu-
rity, and a better level of abstraction. Table 2 summarizes the perceived advan-
tages of the two technologies.

3.2 Accessibility and Ease of Learning

In the feedback form, we asked participants to rate on a 5 point Likert scale
how easy and how fast it was to learn each technology (1=not easy at all, ...,
5=very easy). As shown in Figure 3, 70% rated REST “easy” or “very easy”
to learn. WS-* services, on the other hand, were perceived to be more complex:
only 11% respondents rated them easy to learn. Event if all participants were
required to learn and explain the concepts of both technologies, compare their
advantages, analyze their suitability and explain design decisions, we restricted



6 D. Guinard et al.

REST (N = 69) #

Easy to understand, learn, and implement 36
Lightweight 27
Easy to use for clients 25
More scalable 21
No libraries required 17
Accessible in browser and bookmarkable 14
Reuses HTTP functionality (e.g., caching) 10

WS-* (N = 69) #

WSDL allows to publish a WS-* interface 31
Allows for more complex operations 24
Offers better security 19
Provides higher level of abstraction 11
Has more features 10

Table 2. Participants felt that WS-* provides more features, but REST is easy to
learn and use.

0

5

10

15

20

25

30

35

40

45

P
er

ce
nt

ag
e

of
P

ar
tic

ip
an

ts

Not fast at all (Not fast) (Average) (Fast) Very fast

Speed of Learning

Perceived Learning Accessibility

REST
WS-*

Fig. 2. A majority of participants reported that REST as fast or very fast to learn
and WS-* as not fast or average.

the sample to participants who reported to have worked on programming both
REST and WS-* assignments within their teams (N=19) to avoid bias. We then
applied the Wilcoxon signed rank test for the two paired samples to compare
the perceived ease of learning for REST and WS-*. Our results show that REST
(with an average M = 3.85 and a Standard Deviation SD = 1.09) was reported
to be statistically significantly easier to learn than WS-* (M = 2.50, SD = 1.10):
V = 153, p < 0.001. Similarly, REST (M = 3.43, SD = 1.09) was perceived to
be significantly faster to learn than WS-* (M = 2.21, SD = 0.80), V = 53, p <
0.009, N = 14.

Furthermore, in the feedback form, we collected qualitative data on the chal-
lenges of learning both technologies, asking the participants: “What were the
challenges you encountered in learning each of the technologies? Which one was
faster and easier to learn?”. Nine participants explained that REST was easier



REST or WS-*? A Developers’ Perspective 7

and faster to learn because RESTful Web services are based on technologies,
such as HTTP and HTML, which are well-known to most tech-savvy people:
“Everybody who is using a browser already knows a little about [REST].”

WS-* was perceived to be overly complicated: “REST is easy and WS-* is
just a complicated mess.” Reasons for such strong statements were the complex-
ity of extracting useful information out of the WSDL and SOAP files (mentioned
by 8), as well as the little and poor documentation of parameters for a SOAP
call. The lack of clear documentation was perceived as a problem for REST as
well: Seven participants said that further request examples, alongside with the
traditional documentation (e.g., Javadoc) for both REST and WS-*, would be
very useful. Eight participants explicitly mentioned that they had had previous
experience with REST during their spare time. This illustrates the accessibility
and appeal of RESTful Web services, and it positions them as an ideal candidate
for smart things APIs in terms of lowering the entry barrier for creating appli-
cations. In the feedback form, 25 participants said that REST made it easier to
understand what services the sensor nodes offered. Eight participants explained
this by the fact that, for REST, an HTML interface was provided. This em-
phasizes that RESTful smart things should offer an HTML representation by
default. Seven participants found WS-* easier for this matter. They noted that
a WSDL file was not necessarily easy to read, but they liked the fact that it was
“standard”.

0

5

10

15

20

25

30

35

40

45

P
er

ce
nt

ag
e

of
P

ar
tic

ip
an

ts

Not easy at all (Not easy) (Average) (Easy) Very Easy

Level of Easiness

Perceived Easiness of Learning

REST
WS-*

Fig. 3. Participants reported REST as easier to learn than WS-*.

3.3 Suitability for Use-Cases

In the feedback form, we asked participants to rate on a Likert scale (1=WS-*, ...,
5=REST) which one of the two technologies they would recommend in specific
scenarios. REST was considered more suitable than WS-* for IoT applications
running on embedded devices and mobile phones (see Figure 4). The one sample
Wilcoxon signed rank test confirmed that the sample average was statistically



8 D. Guinard et al.

higher than the neutral 3, and therefore inclined towards REST. This was the
case both for embedded devices (M = 3.86, SD = 1.03, V = 342, p < 0.001),
and for mobile phone applications (M = 3.51, SD = 1.12, V = 252, p < 0.007).
For business applications, however, a higher preference for WS-* was stated but
not statistically significant (M = 2.67, SD = 1.33, V = 163.5, p = 0.12).

General Use-Cases We asked our participants to discuss the general use-
cases for which each technology appeared suitable. When asked: “For what kind
of applications is REST suitable?”, 23 people mentioned that REST was well
adapted for simple applications offering limited and atomic functionality: “for
applications where you only need create/read/update and delete [operations]”. 8
participants also advised the use of REST when security is not a core requirement
of the application: “Applications where no higher security level than the one
of HTTP[s] is needed”. This is supported by the fact that the WS-* security
specification offers more levels of security than the use of HTTPS and SSL in
REST [11]. 6 participants suggested that REST was more adapted for user-
targeted applications: “[...] for applications that present received content directly
to the user”. Along these lines, 14 users said that REST was more adapted for
Web applications or applications requiring to integrate Web content: “[for] Web
Mashups, REST services compose easily”.

We then asked: “For what kind of applications is WS-* more suitable?”. 20
participants mentioned that WS-* was more adapted for secure applications:
“applications that require extended security features, where SSL is not enough”.
16 participants suggested to use WS-* when strong contracts on the message
formats were required, often referring to the use of WSDL files: “with WS-*
[...] specifications can easily be written in a standard machine-readable format
(WSDL, XSD)”.

REST (N=37) #

For simple applications, with atomic functionality 23
For Web applications and Mashups 14
If security is not a core requirement 8
For user-centered applications 6
For heterogeneous environments 6

WS-* (N=37) #

For secure applications 20
When contracts on message formats are needed 16

Table 3. REST was perceived to be more suited for simple applications, and WS-*
for applications where security is important.

For Smart Things Both WS-* and RESTful Web Services were not primarily
designed to run on embedded devices and mobile phones but rather on business
or Web servers. Thus, assessing the suitability of the two approaches for devices
with limited capabilities is relevant.



REST or WS-*? A Developers’ Perspective 9

As shown in the first part of Figure 4, for providing services on embedded
devices, 66% of the participants suggested that REST was either “adapted”
or “very-adapted”. When asked to elaborate on their answers, 6 participants
suggested that for heterogeneous environments, REST was more suitable: “for
simple application, running on several clients (PC, iPhone, Android) [...]”. 7
participants said that REST was adapted for embedded and mobile devices
because it was more lightweight and better suited for such devices in general:
“the mapping of a sensor network to the REST verbs is natural [...]”. To confirm
this, we investigated the size of the application packages for both approaches.
The average footprint of the REST application was 17.46 kB while the WS-*
application had a size of 83.27 kB on average. The difference here is mainly
due to the necessity to include the kSoap2 library with every WS-* application.
These results confirm earlier performance and footprint evaluations [2, 5, 13].

For Smart Home Applications We then went into more specific use cases, asking:
“Imagine you want to deploy a sensor network in your home. Which technology
would you use and why?”. Sixty-two respondents recommended REST to deploy
a sensor network in the home, 5 recommended WS-*, and 2 were undecided.
Twenty-four participants justified the choice of REST by invoking its simplic-
ity both in terms of use and development: “REST [...] requires less effort to be
set up”, “Easier to use REST, especially in connection with a Web interface”.
Eight participants said that REST is more lightweight, which is important in a
home environment populated by heterogeneous home appliances. Interestingly,
14 participants mentioned that in home environments there are very little con-
cerns about security and thus, the advanced security features of WS-* were not
required: “I would not care if my neighbor can read these values”, “The infor-
mation isn’t really sensitive”.

For Mobile Phones Since the mobile phone is a key interaction device for creating
IoT applications, we asked the participants to assess the suitability of each plat-
form for creating mobile phone clients to smart things. As shown in the second
part of Figure 4, 53% of the participants would use REST, 16% would use WS-*
and 32% were undecided. They explained these contrasted results by the fact
that mobile phones are getting very powerful. 7 participants explained that the
amount of data to be processed was smaller with REST which was perceived as
an important fact for mobile clients. Interestingly, some participants considered
the customers of mobile platforms to have different requirements: “I would use
REST, since customers prefer speed and fun over security for smaller devices”.
The lack of native WS-* support on Android (which natively supports HTTP)
and the required use of external libraries was also mentioned as a decision factor
as REST calls can be simply implemented only using the native HTTP libraries.

For Business Applications The results are much more inclined towards WS-*
when considering “business” applications. As shown in the third part of Figure
4, the majority of our participants (52%) would choose WS-* and 24% REST
for servicing business applications. Twenty-one (out of 69, see Table 1) justify



10 D. Guinard et al.

their decision by the security needs of enterprise applications: “I would rely on
the more secure WS-* technology”. Eighteen participants talk about the bet-
ter described service contracts when using WS-*: “I propose WS-* because we
could use WSDL and XSD to agree on a well-specified interface early on [...]”.
Amongst the participants suggesting the use of REST, 10 justify their decision
with its simplicity and 10 with its better scalability.

0

5

10

15

20

25

30

35

40

P
er

ce
nt

ag
e

of
P

ar
tic

ip
an

ts

Embedded Devices Mobile Phone Business Apps

Suitable Architecture for...

Suitability for Application Progamming by Domain

1=WS-*
2=More WS-*
3=Neutral
4=More REST
5=REST

Fig. 4. Participants reported that REST is better suited for Internet of Things applica-
tions, involving mobile and embedded devices and WS-* fits better to the requirements
of business applications (N = 69).

4 Discussion and Summary

A central concern in the Internet of Things and thus in the Web of Things is
the interoperability between smart objects and existing standards and applica-
tions. Two service-oriented approaches are currently at the center of research
and development: REST and WS-*. Decisions on which approach to adopt have
important consequences for an IoT system and should be made carefully. Our
contribution is to complement existing studies on performance metrics with an
evaluation of the developers’ preferences and IoT programming experiences with
REST and WS-*. Our results show that, in the context of the conducted study,
REST stands out as the favorite service architecture. We summarize the decision
criteria used by developers in our study and devise guidelines in Table 4.

Future studies should conduct a long-term assessment of the developers’ ex-
perience, beyond the initial phase of getting started with the technologies. As
an example it would be interesting to address the clear trend (52% for WS-*,
24% for REST) towards choosing a WS-* architecture when considering busi-
ness applications even if overall the participants favored REST and mentioned
its superiority for several important factors in business environments such as
scalability or interoperability. Are their decisions solely based on the superior
security features of WS-* or is there a perception bias?

Furthermore, some of the participants’ remarks (e.g., on the low security
requirements in home environments) should be put in the context of relatively



REST or WS-*? A Developers’ Perspective 11

novice developers. Hence, future work could be done to compare the experience
of advanced developers, possibly within industry projects. However, the more
experienced the developers are, the more they are likely to develop a bias towards
one or the other technology.

Requirement REST WS-* Justification

Mobile & Embedded + - Lightweight, IP/HTTP support

Ease of use ++ - Easy to learn

Foster third-party adoption ++ - Easy to prototype

Scalability ++ + Web mechanisms

Web integration +++ + Web is RESTful

Business + ++ QoS & security

Service contracts + ++ WSDL

Adv. security - +++ WS-Security

Table 4. Guidelines for choosing a service architecture for IoT platforms.

While our results confirm several other research projects that take a more
performance-centric approach [2, 5, 13], they contradict several industry trends.
In home and industrial automation, standards such as UPnP, DLNA or DPWS
expose their services using WS-* standards. One of the reasons for this, also
noted by participants, is the lack of formal service contracts (such as WSDL
and SOAP) for RESTful services. This is an arguable point as Web experts [11]
already illustrated how a well-designed RESTful interface combined with HTTP
content negotiation results in a service contract similar to what WS-* offers [11],
with no overhead and more adapted to services of smart things [5]. Yet, this
illustrates an important weakness of RESTful Web services: RESTful Web ser-
vices are a relatively fuzzy concept. Even if the basics of REST are very simple,
the lack of a clear stakeholder managing “standard” RESTful architectures is
subject to many (wrong) interpretations of the concept. Until this is improved,
resources such as [3, 11] profile themselves as de facto standards.

In cases with strong security requirements, WS-* has a competitive advan-
tage [9, 11]. The WS-Security standard offers a greater number of options than
HTTPS (TLS/SSL) such as encryption and authentication beyond the communi-
cation channel, endpoint-to-endpoint. In theory, these could also be implemented
for RESTful Web services. However, the lack of standard HTTP support of these
techniques would result in tight coupling between the secured things and their
clients. Nevertheless, in the context of smart things, it is also important to real-
ize that WS-Security standards are much more resource intensive than those of
HTTPS and, thus, rarely fit resource-constrained devices.

Finally, it is important to consider how accessible smart things should be.
Participants identified that RESTful Web services represent the most straight-
forward and simple way of achieving a global network of smart things because
RESTful Web services seamlessly integrate with the Web. This goes along the
lines of recent developments, such as 6LoWPAN [7] and the IPSO alliance8,

8 See ipso-alliance.org



12 D. Guinard et al.

CoRE9 and CoAP [12], or the Web of Things Architecture [5], where smart
things are increasingly becoming part of the Internet and the Web.

References

1. Fred D. Davis. Perceived Usefulness, Perceived Ease of Use, and User Acceptance
of Information Technology. MIS Quarterly, 13(3):319–340, 1989.

2. W. Drytkiewicz, I. Radusch, S. Arbanowski, and R. Popescu-Zeletin. pREST: a
REST-based protocol for pervasive systems. In Proc. of the IEEE International
Conference on Mobile Ad-hoc and Sensor Systems, pages 340–348. IEEE, 2004.

3. R. Fielding. Architectural styles and the design of network-based software architec-
tures. Phd thesis, 2000.

4. David Gefen and Mark Keil. The impact of developer responsiveness on perceptions
of usefulness and ease of use: an extension of the technology acceptance model.
SIGMIS Database, 29:35–49, April 1998.

5. Dominique Guinard, Vlad Trifa, and Erik Wilde. A Resource Oriented Architecture
for the Web of Things. In Proc. of the 2nd International Conference on the Internet
of Things (IoT 2010), LNCS, Tokyo, Japan, November 2010. Springer Berlin /
Heidelberg.

6. F. Jammes and H. Smit. Service-oriented paradigms in industrial automation.
IEEE Transactions on Industrial Informatics, 1(1):62–70, 2005.

7. Geoff Mulligan. The 6LoWPAN architecture. In Proc. of the 4th workshop on Em-
bedded networked sensors (EmNets ’07), EmNets ’07, pages 78–82, Cork, Ireland,
2007. ACM.

8. Cesare Pautasso and Erik Wilde. Why is the web loosely coupled?: a multi-faceted
metric for service design. In Proc. of the 18th international conference on World
Wide Web (WWW ’09), pages 911–920, Madrid, Spain, April 2009. ACM.

9. Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. Restful web services
vs. big web services: making the right architectural decision. In Proc. of the 17th
international conference on World Wide Web (WWW ’08), pages 805–814, New
York, NY, USA, 2008. ACM.

10. N.B. Priyantha, Aman Kansal, Michel Goraczko, and Feng Zhao. Tiny web ser-
vices: design and implementation of interoperable and evolvable sensor networks.
In Proc. of the 6th ACM conference on Embedded Network Sensor Systems (SenSys
’08), pages 253–266, Raleigh, NC, USA, 2008. ACM.

11. Leonard Richardson and Sam Ruby. RESTful web services. O’Reilly Media, May
2007.

12. Z. Shelby. Embedded web services. IEEE Wireless Communications, 17(6):52–57,
December 2010.

13. Dogan Yazar and Adam Dunkels. Efficient application integration in IP-based
sensor networks. In Proceedings of the First ACM Workshop on Embedded Sens-
ing Systems for Energy-Efficiency in Buildings, page 4348, Berkeley, CA, USA,
November 2009.

9 See tools.ietf.org/wg/core


	In Search of an Internet of Things Service Architecture: REST or WS-*? A Developers' Perspective
	Dominique Guinard, Iulia Ion, Simon Mayer

